Note
Click here to download the full example code
Use of KPLSKΒΆ
from smt.sampling_methods import LHS
from smt.problems import Sphere
from smt.surrogate_models import KPLSK
import numpy as np
import otsmt
import openturns as ot
Definition of Initial data
Training of smt model for KPLSK
sm_kplsk = KPLSK(theta0=[1e-2])
sm_kplsk.set_training_values(xt, yt[:,0])
sm_kplsk.train()
Out:
___________________________________________________________________________
                                   KPLSK
___________________________________________________________________________
 Problem size
      # training points.        : 40
___________________________________________________________________________
 Training
   Training ...
   Training - done. Time (sec):  0.0953236
Creation of OpenTurns PythonFunction for prediction
otkplsk = otsmt.smt2ot(sm_kplsk)
otkplskprediction = otkplsk.getPredictionFunction()
otkplskvariances = otkplsk.getConditionalVarianceFunction()
otkplskgradient = otkplsk.getPredictionDerivativesFunction()
print('Predicted values by KPLSK:',otkplskprediction(xv))
print('Predicted variances values by KPLSK:',otkplskvariances(xv))
print('Prediction derivatives derivatives by KPLSK:',otkplskgradient(xv))
Out:
___________________________________________________________________________
 Evaluation
      # eval points. : 2
   Predicting ...
   Predicting - done. Time (sec):  0.0002224
   Prediction time/pt. (sec) :  0.0001112
Predicted values by KPLSK:     [ y0      ]
0 : [ 1.01022 ]
1 : [ 5.00008 ]
Predicted variances values by KPLSK:     [ y0          ]
0 : [ 5.85532e-08 ]
1 : [ 5.94511e-08 ]
___________________________________________________________________________
 Evaluation
      # eval points. : 2
   Predicting ...
   Predicting - done. Time (sec):  0.0001738
   Prediction time/pt. (sec) :  0.0000869
___________________________________________________________________________
 Evaluation
      # eval points. : 2
   Predicting ...
   Predicting - done. Time (sec):  0.0001333
   Prediction time/pt. (sec) :  0.0000666
Prediction derivatives derivatives by KPLSK:     [ y0      y1      ]
0 : [ 0.19995 1.99993 ]
1 : [ 1.99992 3.9999  ]
Total running time of the script: ( 0 minutes 0.101 seconds)
      otsmt